


Overview

We are surrounded by seemingly invisible forces that guide the creation of everything

from home appliances to digital media. These forces are often standardized into a set of rules

that ensure consistency and reproducibility in the creation process. One such set of

standardization can be found in the digital products we use everyday. These are considered

style guides or design systems, and they underpin every visual and functional decision of the

product.

A design systems prime directive is to provide a stable and reliable source of product

information. However, with today's digital product design ecosystem, these systems are starting

to struggle under the weight of shifting product requirements and an ever changing digital

landscape, falling short of their original goals. Trying to maintain stability in such systems has

become a costly and frustratingly inefficient experience. When agility and adaptability are what

sets apart the good systems from great we must find a way to imbue our systems with these

capabilities.

To achieve this we can look at the concept of the Universal Design System (UDS) – an

approach to design systems that breaks free from the constraints of traditional system

frameworks. “Universal Design Systems” delves deep into the significance of two primary

components: Agnostic Design Systems (ADS) and Product Kits (PK), a dynamic duo that

operates better together than alone. The combination of these two will afford us with a flexible,

efficient, and understandable design system.

By the end of this journey, you'll gain an understanding of the importance of the Universal

Design System and the guiding principles behind it, illuminating its positive impacts on both the

end user and product maintainers. Perhaps you'll even be inspired to apply what you've learned

to an existing product or project.

2



Table of Contents

Chapter 1: Design Systems 4
Chapter 2: The Landscape of Systems Today 9
Chapter 3: The Universal Design System 14
Chapter 4: Agnostic Design System 16

Layer 1: Assets and Behaviors 18
Layer 2: Atoms 19
Layer 3: Molecules 23
Layer 4: Advanced 25
Layer 5: Documentation 25

Chapter 5: Product Kits 27
Product Theme 28
Product Components 38
Product Documentation 41

Chapter 6: UDS Benefits 46
Product Decoupling 47
Communication Streamlining 48
Overhead Reduction 48
Accessibility From The Start 48
Rapid Iteration 49

Chapter 7: Conclusion 50
Terminology 52

Design Systems 52
Agnostic System 52
Patterns 52
Accessibility 52
Components 52
Tokens 52
Master Component 52

Component Variant 53
Component Parts 53
Blueprints 53
“Replace Me” 53
Slots 53

3



Chapter 1: Design Systems

Design systems govern almost all of the products we use. They are a silent mediating

force that helps ensure that visual and functional details are in alignment. Let’s examine what a

design system aims to accomplish.

4



Design systems are just what they sound like: a systematic organization of information

that enables brand adherence and feature reproducibility. They contain the intended colors,

icons, functionality, and more that make up the fingerprint of our everyday products. These

systems don’t start and end with digital experiences; they also appear in the physical world as

style guides. These are the blueprints that guide the design of shampoo bottles, cereal boxes,

home appliances, etc. With the system acting as guidance, brands become easier to recognize

and their product experience becomes more predictable. Here we can see that within Apple’s

guidelines for store identities Apple provides explicit instruction on how store owners should and

should not display signage. This is just one of many guidelines that Apple provides and it helps

to ensure a cohesive and consistent experience at all Apple store venues.

Apple Identity Guidelines for Channel Affiliates and Apple-Certified Individuals (page 50)

Even everyday utilities rely on a standardized ruleset to remain effective. In the United States,

stop signs appear almost the same wherever you are. According to the US Department of

Transportation’s “Manual on Uniform Traffic Control Devices (MUTCD)”, Chapter 2B “Regulatory

Signs”, Section 2B.04 STOP Sign (R1-1), stop signs must follow these standards.

5



DOT MUTCD - Figure 2B-1

1. The STOP sign shall be an octagon with a white legend and border on a red background.

2. Secondary legends shall not be used on STOP sign faces.

3. If appropriate, a supplemental plaque (R1-3 or R1-4) shall be used to display a secondary legend.

a. Such plaques (see Figure 2B-1) shall have a white legend and border on a red

background.

4. If the number of approach legs controlled by STOP signs at an intersection is three or more, the

numeral on the supplemental plaque, if used, shall correspond to the actual number of legs

controlled by STOP signs.

This set of guidelines is rigid enough to allow stop signs to communicate a predictable and

reproducible message to all drivers while allowing flexibility in niche situations requiring

modification. Drivers, much like users of digital products, have learned to expect specific

outcomes from their previous experiences. These standards help not only the driver but also the

individuals creating new road infrastructure by ensuring consistency. Imagine if a road worker

was feeling fun and turned a bunch of stop signs into white triangles; drivers would probably

pass them off as an unimportant oddity and keep driving. Similarly, users of digital experiences

have come to expect various mirrored experiences between the products they use. Swiping

your finger should scroll the page, trash can icons usually imply some sort of delete feature, and

buttons perform some action. Much like the Department of Transportation, digital products

require their own standardized documentation that helps instill a sense of trust within the user

experience.

6



Physical style guides and digital design systems tend to have many parallels, but the digital

systems' environment requires the incorporation of supplementary information and processes.

The majority of this information comes from three main groups with a hand in the product.

The development, design, and product stakeholders provide the bulk of resources that make up

the final product. These are the three internal groups that a design system needs to cater to

along with the external end users of the product. Similar to how the DOT’s standards are

intended for both the drivers experiencing these road markings and the ones implementing said

markings. Design systems serve stakeholders, who must work from a set of standards to

effectively produce the features and experiences required by the product, and the user, who

relies on a consistent and predictable experience.

In essence, the product stakeholders focus on the high-level needs and desires of the product’s

target audience. They assess roadmaps and form the feature requirements that describe what

should be incorporated into the product. The design and development stakeholders will utilize

these requirements to piece together the solutions that end up getting implemented into the final

product. Designers then generate visuals and user experience flows off these requirements. In

the end designers need to provide well thought out and detailed guidance for developers to

7



work from. Developers will take these design specifications and incorporate them into the code

of the product.

Throughout this process each group is communicating with one another to ensure accuracy to

the experience of the existing product and adherence to the requested features. In order for

teams to reliably produce new features there has to be a shared set of documentation that

keeps everyone on the same page. To keep the product visually and experientially consistent,

designers should have a set standards for styles, components, and experience patterns.

Without this you run the risk of having 5 different ways users perform the same action or

different ways of visually portraying the same content. By establishing set ways of serving up

experiences we ensure consistent outputs. Developers require similar documentation in order to

keep the creation of repeat code which causes maintenance issues and increases time spent in

the development phase. Documentation such as templated component code and code patterns

keep cross-team work in sync and repeat work down. Product stakeholders are a great example

of the need for shared information systems. They are in the unique position where a solid

understanding of the availability of components, experience patterns, and styles enable them to

more accurately assess the possibility of their feature requests and timeline expectations.

Product individuals can compare product needs against what exists today. They can see that

certain components are available to solve for their needs. On the flip side, they will see that the

components needed for their features do not exist, affecting timelines and resource allocation.

Together, each group should work together to keep each informed through the creation of

standardized patterns and documentation that is shared throughout the organization. Without

this, the disjointed nature of the product would be very apparent as each individual contributor

starts fresh with each new assignment.

These documentation sets are often where many issues within design systems lie and it’s not

just the documentation itself that is the problem. The combination of neglected documentation

and a system whose foundation lacks a framework conducive to properly maintained

documentation is where the true issues are found. The complexity of digital products and the

landscape they inhabit is requiring design system solutions that can match that complexity and

scale.

8



Chapter 2: The Landscape of Systems Today

Now that we know what a design system entails, we can dive deeper into the shared

methodologies and frameworks that today's systems operate on. We will examine how such

systems have led us to a crossroads of inefficiency and frustration. This chapter covers the

current state of affairs, exploring the dilemmas that plague traditional design system

architectures and addressing the overdue need for novel solutions.

9



A product's life cycle is constantly in flux. It’s normal to have additional feature requests,

brand modifications, content adjustments and more. The systems driving these products are

often unable to dissipate this amount of uncertainty and change properly.

Today’s systems have been successful in their mission to a point. But they were not built with

longevity in mind. While they once represented well manicured guidelines now they resemble a

web of dependencies that have become increasingly difficult to straighten out. Leaving individual

product contributors to fend for themselves.

As discussed previously, each stake-holder group requires certain information to be made

available to them in order to work and collaborate effectively. The required information both

shared and not resembles something like this:

Organizations are faced with the task of wrangling all these different information points into one

standardized system. Their solutions, however, were not done in a way that allowed for

future-proofing, shareability, or easy maintenance. Over time each group focused on their own

documentation, ensuring their needs were met first. This left other stake-holder groups in a state

10



of uncertainty, trying to decipher eachothers documentation. The result of which is information

duplication and a higher rate of “page rot” or documentation that has been neglected to the point

of inaccuracy. As others come across these stale guidelines they take them as truth, further

amplifying the issue. Organizations have attempted to remedy this issue by spinning up teams

whose focus is the remediation of the forgotten documentation.

This is one of the reactionary responses that present day systems are unknowingly requiring of

its contributors. It causes an unnecessary reallocation of resources resulting in bottlenecks in

previously unrestricted areas of the team's workflows. Even if a team is successful in updating

the documentation, if the cause behind why the documentation went unchecked is not assessed

then it’s only addressing the symptoms of the problem. These patch-job solutions become a

recurring event taking time away from the system's critical problems and drain resources from

other parts of the application.

One external force working against the steady maintenance of a design system is the internet's

intrinsic property of never staying the same. The development frameworks that serve as the

code foundations for many digital products constantly change to keep pace with reality. Whether

due to security concerns with outdated frameworks or incompatibilities with new versions of the

code, sooner or later, teams have to make major changes to the product’s codebase. This is yet

another example of a reactionary response to a predictable situation. For a product to be agile

they need to to keep pace with this rapid shift in technology. An ability that requires a

development foundation that is flexible. But, seen as unlikely and not worth the investment we

once again find ourselves patching over the symptoms until the system starts to resemble a

Ship of Theseus. The ease of saying, “Get there when we get there”, enables us to push

important issues into the future until the last straw breaks the camel's back resulting in

massively expensive rework. Whereas the upfront investment in a robust foundation would have

negated many of these headaches in the first place.

We also find faults in the drive for product progress and growth. While perceived as growth, the

expansion of product features, feature complexity, product offerings or team size, increases the

relative complexity of each resource required to develop the product. This is a compounding

effect as we extrapolate work overtime. Similar to how we may wait to the last minute to refactor

dead code, by letting complexity get out of hand without an ability to functionality match that

pace we inevitably start acquiring more problems. General employee turnover from requiring

11



teammates to work in unorganized and nebulous systems causes siloed knowledge to be lost,

outdated documentation gets misinterpreted, and the original process for maintaining the

system falls to the wayside as changes appear faster then they can be written down. Without

proper care important information goes missing or becomes stale over time. Each previously

mentioned stakeholder requires a lot of varying sets of information that range from process

guidance to foundational product knowledge. With no reliable source of truth, teams spend time

attempting to procure answers to their questions without assistance. Their daily tasks go from

focusing on their work to trying to set up an environment where they can do it. Product

information they thought was valid one day may differ from the next as information shifts around.

Unable to keep up, these systems become fractured into an array of different frameworks,

styling, feature experiences, and information from disparate product knowledge in an attempt to

keep pace with the world around it. Eventually this becomes too much to wade through and

timelines begin to expand and progress slows.

As we’ve started to allude to, today's systems infrastructure and information management

processes are not just a hindrance to the development of the product, but the proper cohesion

between teams as well. The lack of communication and collaboration between designers,

developers, and product individuals is a common theme. This lack of understanding leads to

slow production times and a worse overall working experience for individual contributors.

Scattered or lack of documentation on everything from expected experiences to the availability

of resources within code leaves each group to fend for themselves. A rift forms between

stakeholders as each spends most of their time trying to keep their ship afloat. This is where we

start to get greater degradation in designer/developer collaboration and turnover and poor

production quality become just some of the significant implications of this lack of interdisciplinary

support.

While initially expedient, the popular approach to design systems soon reveals its shortcomings

as maintenance costs soar and compatibility issues abound. The lack of cohesion and clarity

within these systems impedes productivity and undermines digital products' integrity. The

compounding nature of information requires a robust system to manage it all.

In the following chapters we will delve deep into the intricacies of the Agnostic Design System

(ADS) and its counterpart, the Product Kit (PK), exploring the layers that comprise each. Luckily,

12



we won’t be deviating from many of the major concepts of today's system; instead, we will be

optimizing them to work together. From the foundational principles of web components and

accessibility to the nuances of collaboration and documentation, we will look at what it takes to

enter a new era of system management for digital design and product development.

13



Chapter 3: The Universal Design System
We’ve identified various issues with today's implementation of design systems. Issues

such as the fragmentation of information between collaborative stakeholders of a product and

the lack of system adaptability which leads to instability and communication problems. Let’s see

how the Universal Design System can step in to solve these issues and improve the product

design experience overall.

14



Today’s systems lack the adaptability to efficiently pivot and stay on top of changing

circumstances. More time is being spent maintaining the systems than growing and enhancing

them. It becomes a job in and of itself not just for one team but all the teams involved. The root

of which can be found at the core foundations underlying each segment of product

development. We need systems in place that support the particular needs of our developers,

designers, and product teams. A system that keeps pace and naturally steers itself towards

organization without imposing restrictions on any other stakeholder involved.

To solve these issues we can intentionally arrange many of the artifacts in our existing systems

following principles of the Universal Design System. While still maintaining many well known

concepts of design systems like tokens, components, and more, we can reconfigure its pieces

to allow them to work in a more harmonious way with one another.

When we look at a Universal Design System we will focus on two primary parts. Our underlying

development foundation, which we will call our Agnostic Design System, makes up the first half.

This is where we create an extensible and flexible component set underpinned by guidelines

focused on ensuring we don’t repeat past issues. The second half is a dual purpose concept

called Product Kits. These aim to organize individual product principles and set up an avenue of

communication between it, other products, and the Agnostic Design System.

15



Chapter 4: Agnostic Design System
The first part of the Universal Design System is the Agnostic Design System. This system is

what enables the decoupling of the underlying development system from the products that

utilize it. With this system we will be able to mitigate many of the issues that arise from the

rapidly changing tech landscape and provide a solid foundation for a multitude of product

applications to hit the ground running.

16



The agnostic system is more of a development framework than a design system. But the

concepts we will be applying to it make it system-like, so the two are interchangeable. We will

continue to call it an Agnostic Design System or ADS.

Development frameworks are used to provide the digital components an application needs to

build out its features. Components like buttons, form inputs, error messages can all be pre-built

and provided by these frameworks to improve development efficiency. But these frameworks

often have embedded concepts that make them rigid. One example being that these

frameworks will choose ahead of time what development system they are based on like React,

Angular, Vue, or Svelte. Locking you into a certain ecosystem. These development frameworks

also lack accessibility and other important features that enable scalability and customization.

Once you choose a framework you are stuck with it until you are forced to spend the time and

money to switch to a new one often due to a lack of support or feature set.

While company-built frameworks can be useful as they remove a lot of the overhead from the

development process, the issue with them is that they often are based on pre-existing products

who have embedded various product prescriptions within it. They may also not have certain

features if the product never required them. Features like accessibility compliance which are

often overlooked in the digital product world.

We don’t want to do away with the entire notion of a development framework. The core

concepts and intention behind them are important. From reducing the overhead required to get

product features stood up to making components reusable, these frameworks serve a very

important role.. What we want to do is solve for their inflexibility and cut down on the friction

these built in restrictions can impose on a product. All while keeping the system reusable and

efficient.

The key to solving these issues can be found in the Agnostic Design System (ADS)

methodology. The ADS is an agnostic development framework, meaning that it has no opinion

or preconceived notions around its usage or implementation. More specifically, it has no

imposed development framework or product specifications that often comes from product born

frameworks. By removing these prescriptions and allowing implementers of the framework to

have the freedom of choice we open the door to a more stable and enjoyable development

experience.

17



An Agnostic Design System serves as the functional foundation for digital products and provides

the components, behaviors, and any other development overhead you want to include. When

constructing the ADS we don’t want to make any decision that would require its implementers to

become stuck in one spot or another. To the ADS there is no product that it is aware of. In a

way, the Agnostic Design System is its own product and seeks to adhere to its goal of flexibility

and efficiency.

The ADS will be the foundation that products utilize to create their digital applications. This is

done through the use of reusable functionality and components, as well as robust

documentation. These three are what is required to produce a useful development framework

and should all be built with the intention of being agnostic and flexible. Let’s dive into the layers

that make up the Agnostic Design System.

Layer 1: Assets and Behaviors

The first layer consists of assets and functional behaviors. This layer serves to primarily reduce

the time it takes to stand up new digital applications. By providing a kit of assets, like glyphs and

icons, we allow new and experimental applications to be developed at a quicker pace. This

negates the need to curate graphical sets per application which can be costly when simply

trying to do rapid iteration or create internal applications. This set should not be a requirement

but rather an optional set that helps achieve the aforementioned goals.

Functional behaviors on the other hand are programmatic encapsulations of common human

interaction conditions. Interactions like drag and drop and collapsing interfaces are examples of

this.Instead of applying interactions uniquely to each component, we set them up as reusable

code snippets. With a set of behaviors available for use the ADS can offer ready-made code to

handle these interactions that can be applied to any component that needs it. This way we keep

all the code referenced in one location, drastically reducing maintenance cost and complexity by

18



having one source of truth. Having reusable code like this also allows the behaviors to live on

their own. Products who do not find exactly what they need are able to utilize these behaviors

within their own component contexts instead of reinventing the same thing over and over again.

Layer 2: Atoms

With the next layer we get into the component structure of the Agnostic Design System.

Components are the visuals we interact with and see within an interface. This layer is centered

around a subtype of component called atoms. Atoms are the building blocks of the all preceding

UI and are the most basic form of a component and usually do not contain any other

components within them. The term “atom” comes from the atomic design concept where

components are divided into categories based primarily on their simplicity and ability to be

combined into more complex compositions. Buttons and input fields are good examples of these

as they are basic but can be used in conjunction with other components to produce more

complicated UI, like forms or navigational components.

When forming our layer of atom components we want to take care to ensure we are ensuring

flexibility and customizability along with the other core principles of the ADS. This is where the

19



restrictions of previous development frameworks come in. Company created frameworks often

prescribe systems like React or Svelte to their component sets, requiring the continued use of

these systems for the rest of the product's life. Where the only way around it is a costly

conversion process. To get around this prescription we can utilize a powerful web standard

known as web components that will enable compatibility with all the development systems that

are out there.

Before we had many of the popular development frameworks we know today the web was built

with a combination of HTML (hypertext markup language), CSS (cascading style sheet), and a

touch of Javascript to enable interactivity. Buttons were coded using

syntax like <button> and provided a lean representation of what a

button was. Whereas today's frameworks wrap this lean and efficient

solution up in extra layers that abstract its core purpose away and fill it

with bloat from added features. Web components try to remain true to

the original HTML definition while exposing key features to enable

customization. This is a perfect solution for the Agnostic Design

System. We can utilize this lean base as the foundation of our components code. It may sound

like we are just going to be adding our own bloat to the system but that is not the case. The key

is to not take things too far and extend things just enough to achieve the goals of the ADS.

We want to avoid what other product frameworks have done. Where they are adding layers to

the core HTML so they can interact with existing systems like React and perform hyper-specific

functions that can pigeonhole its implementers. Any and all product definitions must be taken off

of the framework. How a component looks, what icons it has, or what it is used for is not up to

the framework. The onus is on products implementing the framework within their application to

decide those details. This is where the Agnostic Design System gets its agnostic trait. The ADS

is able to avoid over-prescription and enable those prescriptions to be applied via the product.

Enabling an efficient, flexible, and lean route to execution.

With the utilization of web components in order to create component foundations that are

agnostic and unrestricted we want to ensure their ability to remain customizable. Today's

frameworks often come with pre-styled components. While helpful to a degree, this falls apart

once anyone else wants to utilize it for a new application. The inclusion of these extra styling

muddies the waters and is essentially useless for any other application as their look and feel will

20



vary dramatically. The ADS wants to avoid this stylistic prescription for its components to ensure

that they can be customized in the future.

To achieve this we want to expose all of the styles within a component for implementers to

utilize. Even considering the inclusion of marked locations for additional components and assets

to be placed. The goal is to provide all the levers to a component but not set the positions of

them, that is up to the products who use the ADS.

Let’s look at this through the lens of the button atom component. Buttons come in many forms

and are intended for a wide array of situations. Defining the

core ideals of buttons is important to creating its agnostic

version. Buttons are clickable elements that perform an action.

They may be square, circular, gray, blue, or even an icon. At the

ADS level we don’t know how it’s going to look so we want to

leave it open to interpretation. While we could just provide a

blank UI with functionality to handle a click interaction that wouldn't be terribly helpful. Along with

that functionality we want to provide avenues to customization.

This is where we get into slots and tokens, the customization structure that allows for ADS

implementers to apply their visual specifications. Slots are placeholders within the component to

allow for the inclusion of other components or assets within it. In the case of the button we can

include slots on the left and right of the buttons label, providing locations for icons to be placed.

21



Having slots can massively improve the speed in which teams can implement the components

on the product side. Slot locations can be set up to cover a large swath of component use cases

while remaining an optional feature for implementers.

As with all components in the ADS, we also want our component atoms to come from some

core states. For the button this might be the inclusion of a hover, focus, default, and disabled

state. Having these states makes the application of styling more straightforward and paves the

way for more robust accessibility adherence as different states require different accessibility

features.

With these states we add some organization to the

customization of the component. Within these we

can also provide access to the components various

style properties. We can expose this customization

in a structured way through the use of CSS

templates.

Components come with CSS that implementers can

utilize to apply their specific styling to. This can get laid out with states as the high level groups

and the parts of the components as the children within them. Each state also has spots for the

customization of strokes, backgrounds, spacing, and more.

22



Today's systems often come with concepts like primary, secondary, and tertiary for their buttons.

These are product specific concepts that we avoid prescribing with the ADS. The ADS simply

supplies access to the styles and allows products to decide what they need.

Layer 3: Molecules

The next layer of the ADS is molecules. These are very similar to atoms but are more complex

in their construction and purpose. Where atoms are basic components that represent well

known UI like buttons and input, molecules are

compositions of atoms and behaviors that are

geared towards more specific circumstances.

These could be headers, alert messaging,

dialogs, or banners. Essentially any

combination of atoms and molecules that form a

new component. Molecules primarily serve as a

categorization to separate simple from more complex components to help implementers make

better sense of the system as a whole. At the atom layer you could expect to have much more

freedom in terms of composition then you would at the molecule or higher layers.

23



It is important to remember that frameworks

are not just for developers. In order to

maintain healthy collaborative relationships

with other stakeholders the framework needs

artifacts that allow for this communication to

take place. To achieve this we can include a

design library based on the framework for

designers to work from and developers to

reference. This is a very important artifact as it helps bridge the communication gap between

these two groups. Product teams will pull the ADS design library into their product specific

design library and use its components as their foundation. The ADS library is not used directly, it

is brought into new libraries and styled against product specifications. This way we retain

naming, slots, and more that help communicate the construction of components to design and

product stakeholders. When we look at a component within the Product Kit we will be able to

see what components from the ADS are in use and how. Allowing developers to get a clearer

picture of how the components are built.

Here we see the Agnostic Design System representation of a notification item and its

transformation into a Product Kit notification. We want to ensure that the design kit that

designers and developers are working from is as flexible as the system it represents. The ADS

notification is simple, unstyled, and customizable. Slots are used to show where other UI, like

atoms or text, can be slotted in. While slots are optional, they are a no cost way of getting

implementers 90% of the way there without hindering their creative ability. The goal of the ADS

24



is to provide that foundation of pre-done work to reduce the overhead required to set up that

foundation. Once we set up that foundation, we negate the need to do it again for every single

product that is going to use the ADS as its underlying component

architecture.

In this example we can see how the properties panel in an

application like Figma would look for the button component. Clearly

outlined are the different modes or states, locations for slots and

designer experience enhancers like hiding and showing certain

content. Consider adding additional tooling to the design kit for

things like slots. In this image we can see the “UI Slot” that has

been constructed specifically to handle either the swapping in of full

components or the insertion of assets, like glyphs. The swapping

mechanism has been surfaced for designers within the Product Kits

to quickly customize the components to match their visual

specifications.

Layer 4: Advanced

Layer 4 is the last component related layer in the Agnostic

Design System. It primarily serves to categorize the most

complex and massive of components. Things like tables are

a good example of this as those are very large UI composed

of many atoms, molecules, and advanced behaviors. The

same rules apply where we want to leave things open ended

but set up the framework for others to work from.

Layer 5: Documentation

Documentation wraps everything together and is used to

explain the use and implementation of the Agnostic Design

System. Here you want to ensure definitions are in place for

all of the available components within the foundational

system. This resource should also be set up to serve the

25



other stakeholders as well. Utilize a documentation system, like Storybook, to help publicize this

content to your stakeholders. This documentation should lay out some key pieces of

information. Outline the styling API so consumers understand how they can go about

customizing the UI with CSS. Provide the various properties a component might have like states

or functionality options. Consider providing some extra documentation such as interactive

versions of the components so designers can embed them in their documentation and product

folk can understand the capabilities of the UI. Have a theme selector so products can see how

components look for each of the applications. Even consider including accessibility checkers to

showcase the components compliance with various WCAG guidelines. It’s important to get this

documentation done right as it is going to serve many different types of individuals working on

the system. All of which have their own needs and goals in mind. Not only that but instructions

have to be clear enough to explain how individuals go from the unstyled and basic ADS

component to their own Product Kit component.

26



Chapter 5: Product Kits
Where the agnostic system provides us with the foundation of core componentry that comes

with built in accessibility, customization, and functionality. The Product Kit serves as the product

governance that turns the ADS into usable product experiences. They represent the coded

product specific components and the kit that designers use to piece together the product

experiences within their design application.

27



We can think of Product Kits in a similar way to regular design systems and are

essentially the fingerprints for products. They contain very specific visual and user experience

guidelines that dictate how components get composed. Content like type, color, and spacing

scales all get defined here. The Product Kit will then apply these standards to the ADS

foundation to create the product specific components.

Product Kits (PKs) are specifically separated from the underlying ADS to allow for the ADS to

support any number of products and not be hindered by the requirements of any one product. If

the Agnostic Design System made visual and user experience prescriptions to all those who

used it; then there would be an increased risk of timeline and objective collisions between the

products and the ADS. Since every product would want their work implemented in the ADS to

support their own goals, the ADS would have to pick sides and prioritize work arbitrarily. By

setting up Product Kits, we encapsulate this responsibility to the relevant parties and allow them

to work as fast or slow as they desire. All in all, the ADS is responsible for the reusable

foundation and PKs are responsible for the product.

All the core concepts of Product Kits that we will be covering are reproducible without the use of

an agnostic component foundation as they focus on creating a managed and scalable product

design system. You will be able to disconnect it from an underlying ADS but the ADS allows

them to work to their full potential and scale in a far more efficient way. Since the PK’s are using

a foundation of flexible components the aforementioned issues of overhead and shifting

technologies are greatly limited. The concepts we will focus on are documentation, components,

and theming.

Product Theme

The theme of a product is the visual logic that describes how components for a given product

look to the end user. Such as prescribing all alert notifications the same red colors or all primary

buttons utilizing the brand's main color. This

consistent ruleset for visuals allows for stable

adherence and consistent communication

between teams. Having a well-thought-out

and systematic theme allows teams to think

less about what styles go where and focus on

the product instead. Themes can be

28



extended with additional logic to allow for sub-branding, white-labeling, and alternate product

modes. Modes like light, dark, and high contrast.

Themes in a PK are also set up to form a bridge between the design and the code. As we will

discuss, the usage of tokens allows us to have a direct connection with the styles within the

developed components by replacing their static values with adjustable variables. This is very

important as it brings more of the responsibilities to the correct groups. Developers get to focus

on the code and functionality. While designers are able to ensure consistency with a single

source of stylistic truth.

The bulk of a theme consists of all the well known topics in regular design systems. When we

look at a product we see a defined set of styles that make up the entire application. Spacing

between elements used, colors for components, type scales like headers and paragraph text, all

of which is being used in a prescribed and intentional way. This information can come either

from the existing product or from scratch, it all depends where you are starting.

It’s important when creating a PK to have these low level style definitions created so you can

quickly set up the visual foundation as it will inform the rest of the pieces going forward.

Consider including not just type, spacing, and color, but also any drop shadows, gradients, and

borders, if they are used within the application.

In order to get all this information into the Product Kit we want to morph them into a theme

based on data and logical organization. When we think about themes we are primarily looking at

how we can use tokens to tell the visual story of our product components in a way that

29



translates well for designers and developers. So it is important to implement a proper token

structure for the entire product component set.

Let’s dive into what tokens are and how they work together to define our product visuals. Feel

free to follow along in a design app, like Figma, that allows you to set up token structures.

These are not to be confused with the more programmatic definitions of tokens like API or

authentication tokens. Nor should you mistake them for arcade tokens or bus fare. Many refer to

them as design tokens but we well simply refer to them as tokens.

Tokens are key:value pairs that outline and orchestrate the complex nature of component

styling. Where we use the key as the new name we want for a value. They describe every style

defined by the product and often come from existing brand guidelines. Tokens are inherently

reusable and through the right orchestration allow for dynamic relationships between

components and their styling.

We define the theme tokens with three layers, root, alias, and component.

Root tokens are the foundational style layer that the other layers work off of and is where we will

be taking the aforementioned style scales and outlining them for the rest of the layers to work

from. For example you may have a set of reds, greens, blues, and magentas that are all tuned

to the product's identity. These get defined as root tokens in a very plain and simple way, with

the goal of turning our unintelligible hex codes into readable text.

Your red color scale may look like this, red-100 = #eb4034, red-200 = #d1291d, etc. Where you

are providing understandable names to the hex value that represents the real color. It is

recommended to follow this naming scheme of color-### as we want the root layer to impart no

notion of expected usage upon the colors. Using a numerical scale allows us to just portray

color characteristics. Where we know red-100 represents a light red color and red-900

represents a dark red while allowing for new colors to be added at the end or in between with

30



values like red-150 or red-1000. The root layer simply outlines what styles we have at our

disposal and when defined for all our styles afford us with a set of reusable styles.

Now that we have our product styles defined as root tokens we can move on to the next layer,

alias tokens. Much of the dynamic nature of themes and their tokens comes from this alias

layer. This is the middle layer between root tokens and component tokens. Aliases get

categorized into groupings based on design standards that can be reused for various

components. Their names are more specific to their intended usage. Categories could be

branding, notifications, alerts, containers, etc. These categories can be made from scratch but if

you have existing components it is much easier to go through each component to find the

similarities between them to form a starting point for your aliases. Ask yourself, “What styles am

I seeing being reused?” and “Do these reuses have anything in common?”.

Given a situation where the product wants to use the same set of red colors for their error

treatments and green colors for success treatments, aliases pave the way for what that

definition is. Gather up the root tokens you want to use for alert and success components and

create a new naming convention to house them. A good name for this could be “indication” with

child groupings within it called “success” and “attention”.

31



Now, where root token names might look like red-400 = #E15347, the alias token would be a

layer or two deeper, indication-attention-default = red-400. The “indication” keyword is our

parent grouping that will house different forms of indication types. Types like the next keyword

“attention”, but this can also be success, warning, or information. The last keyword, “default”,

indicated the level of color for that type. We still want our aliases to be somewhat vague as the

actual use of color might differ between strokes or backgrounds of particular components. If you

find yourself using the same attention alias token often then that is a good sign that another set

of aliases should be set up for that use case. It all depends on the level of prescription you are

aiming for.

All we are doing here is partitioning off a select group of styles so our tokens and components

further down the chain are referencing the same set of alias tokens. This will enable both style

adherence and easy re-styling as the components will be all pulling from the same set. When

you change any of these alias tokens then the downstream tokens and components will update

themselves without additional intervention.

32



Here we are first reassigning the root token that defines indication-attention-dark token. This

causes all downstream tokens using the attention-dark alias to change as well, causing the

typography/destructive/primary alias to change. We are not relegated to only swapping root

tokens around. Any token that is being defined by another token can have that token changed in

order to be re-styled. Like where we are changing the attention-dark to success-default, causing

the destructive-primary alias to change along with it.

We can take this a step further by looking at re-theming or sub-branding. Since we now have

groups of reusable aliases we are able to have a sense of certainty around color usage for all

our components. Assuming you utilize only aliases when applying style to your components we

know what will be affected by token re-assignments. This is useful because when we want to

incorporate something like dark mode we don’t want to have to go into every component and

change each individual value. As well, we want to ensure consistency in the new color usage. It

is highly unlikely that in this new theme you will have varying colors for primary destructive

typography. If you did that then the brand would be lost as you are changing around the visual

expectations of the product. This is not to say that your application couldn’t have different forms

of primary destructive text. It is not unheard of to have different colors for different typography

sets like headers and paragraphs. But that stylistic concept is also likely already a part of the

original application theme so they would have been set up as aliases prior to creating a dark

mode theme.

When theming we are essentially setting up a second column of token assignments for our

aliases. Re-assigning what root styles an alias originally was pulling from to create this new

33



theme. We still keep our foundational root layer intact and untouched as this base layer should

already have all the colors you need to create a new theme. One column represents something

like light mode and the other dark mode. Swapping one column for another causes that

cascading effect that changes all downstream styles to match the new definitions.

In this example we have our container alias token set that we use for all instances of a container

like UI. In the light mode the background and stroke alias tokens are set to light colors whereas

in the dark mode they have been re-assigned to dark mode friendly root color tokens.

With our alias tokens we now have a set of global, reusable, and adjustable definitions for all

our like-minded styles. These two layers, root and alias, are a very powerful combination that

will reduce the time and effort required to make adjustments to your suite of components.

Many stop at alias tokens, but we are going one layer deeper to component tokens. Component

tokens are the highest level of style token and intended to be a verbose representation of your

components. Each component that you have will have a token for every single style that you

34



have applied to it. Every space, color, gap, margin, and so on, will be documented within this

layer of token. Doing so allows us to have some extra fine tuning around how our components

get styled, it creates a clear schematic for developers to easily understand what tokens go

where, and abstracts the token assignments out enough to make token swaps easier in the

future.

For every component you are going to have two primary categories of component token. A set

of shared tokens and a set of specific, type based tokens. The shared tokens are styles that are

intended to be shared with all variations of a component. While the specific tokens are meant to

describe the differences in style between variations of the same component.

Let’s start with the shared tokens on our example status component. With this component we

will want to first look at all of our status variations and pull out the commonalities. In this

instance we will create tokens for the

padding around the icon and text, the

gap between those two, and the border

radius. We will also be creating a

shared token for the text. In this

example we want all variations of the

status to share the same text color and

by creating just one token for them all

to use will accomplish that.

Before we dive into the specific tokens,

which will be what styles our other

status variants like success and

attention, let’s see how we apply these

to our components. Component tokens

are the last stop in the token hierarchy

and are the values you will apply

directly to your components. In your

design application take the component

tokens you have created and attach

35



them to the styling properties of that component.

Here we can see where each of the aforementioned tokens would go. Their naming scheme

lends them to be easily identifiable both when applying them and when reading them after the

fact. We know that the padding-left and padding-right will both get applied to the padding

properties. This worked for the rest of the styles as well where the gap gets placed in the gap

property and the border radius in the radius property. When it comes to reading the styles after

the fact we also see that after application the properties are now populated with the token name.

Developers are able to look at your component styles and see, for example, the text color is

using the component-status-text property. This is rendered differently in the design application

as “component/status/text” but that will map to “component-status-text” after you export your

tokens to code through JSON. As well, for a design application like Figma Dev Mode converts

these names into CSS for you so there are many ways for developers to get the information

they need.

Now let’s look at the specific values. We have our status styles templated with the shared

values but we need to supply the style definitions that make our statuses look like attention or

success statuses. This is done by creating groups for each of our variations and defining only

the differing styles between them and the

shared styles. In our case this will be the

background, asset color, and stroke color.

For the attention and success status

variants we utilize the indication alias

tokens we already have set up to supply

the reds and greens for its coloring. In the

case of the attention status we are also

defining a stroke whereas the success

status we are not. The visual guidelines

say that success statuses do not have a

stroke where the attention status does. By

adding a stroke token for the attention

status it overrides the fact that our shared

36



style status did not have a stroke. With the success status we don’t add a stroke so it inherits

the traits of the shared status, which does not have a stroke.

Now we are able to supply a full scale of tokens for our components from roots all the way up

through component tokens. While many stop at the alias level it is highly recommended to

continue up though that last component layer. It makes the components easily readable for

anyone that comes across it, like developers and designers. The names are very specific and

are written in a way that describes the exact piece of the component it is being applied to.

Component tokens also allow for minor tweaks if your alias groupings are not cutting it. In cases

where you have a one off color change for something like the attention status you don’t want to

try and add that to the aliases because it is unique to this one instance. Instead you are able to

assign that definition to just that component through component tokens as they are unshared

and decoupled so they will not affect anything else. Component tokens also allow you to take

your time with styling. Making all these tokens takes time, especially the alias groups. Noone

can tell the future and that being the case the alias groups will be forever changing. As well, a

big no no is the

application of root tokens

directly to components.

Doing this makes for a

very rigid styling structure

and negates all the

benefits of the alias layer.

It makes it so, in code, we have to go and edit the CSS because the name of the token has

changed. When the components get coded the token found in their properties panel will be what

is applied to the coded styling. If you are using roots or aliases on a component and change

what token a component uses then that

change will have to be reflected in

code. By having the component token

layer we are able to use that as the

unchanging value that connects your

designs to code. We will always have a

value to refer back to in code so the

design application can just reassign

what is linked to that value and the

37



code will get updated without having to rewrite code. This way you can define your component

token however you need without compromising the coded system. To make this even better, you

can also include more component tokens then you need at the time. Even if your component

does not have a color for a stroke or spacing in certain areas, including component tokens that

are assigned to nothing lets you come back in the future and supply styles if needed. This way

you already have the component tokens in place in code so the reference is available and won’t

need to be added in by the developers.

With our three layers of tokens describing all of our visual standards for our components we

have completed our theme for the Product Kit. The theme will primarily be the responsibility of

the designers since our component tokens will allow them to simply supply updated token

references in order to make new stylistic changes to components. A simple swap of a JSON

style file is all that is needed and no longer do you need to have back and forths between teams

trying to simply update the stroke color of your buttons. This way we are able to bring relevant

responsibilities closer to their owners and will play a part as we move into our next topic,

Product Kit components.

Product Components

We have touched on components a bit in the previous section on tokens. But we have to get to

the point where we can actually apply the tokens to something. Components in a Product Kit

can come about in three main ways. They are either entirely constructed from ADS components,

are a hybrid of ADS and Product Kit components, or are solely Product Kits components. PK

components are components that are developed by that product and are intended for that

product.

ADS only components are essentially theme only components. These are taken straight from

the agnostic system and are styled by applying Product Kit themes to them. They do not require

additional code, functionality, or composition as they come ready to go out of the box. The vast

majority of components will likely fall under this category since atoms make up much of this

layer. Functionally, compositionally, and stylistically atoms are very straight forward. Buttons,

inputs, and statuses all fall under this category. They don’t do much and what makes them

different from one another is purely styling. So Product Kits don’t have to do much more than

style them with their themes.

38



On the development side this is just CSS theming using the tokens from the design application.

But the Product Kit within the design application has to clearly outline the schematics for

developers to know how the component came about. This is where we will want to ensure we

have a base library for the ADS that gets used within the PK design library. The ADS design

library serves as the reference point and base layer for the Product Kit components. When you

are creating your components, start by pulling over an instance of that component from the ADS

library and turn it into a new component

so designers are able to consume it in

their designs. Ensure that you are also

applying all the theme styles to these

new components as well. This way

designers and developers are able to

see both the theme structure and the

construction hierarchy of all the Product

Kit components. Components then take

on a very verbose layering system that clearly shows what parts of a component are direct from

the ADS and what are custom to the Product Kit.

Hybrid components are a middle

ground between fully custom product

components and out of the box ADS

components. Product Kits can take

parts of the ADS component offering

and combine them into new compositions to fit specific user experience requirements. This

situation is as likely to happen as the utilization of styled ADS components. These might be

cards with content within them or notifications. The agnostic system might not have the exact

card component a product requires. But through the combination of a couple styled ADS

buttons, a styled ADS status, and some extra styles, products are able to accomplish everything

they would need with much less overhead. In a system that lacks the shared ADS foundation,

every product looking to use buttons or statuses would have to construct them from the ground

up each time. Looking at this Product Kit specific system message component we can see that

it is not entirely built by the Product Kit. While the component as a whole is solving an issue

designated by a single product, the ADS is able to provide the majority of the pieces that make

39



up the system message component. The layers show that,

under the hood, the PK has rethemed the button, pagination,

and status ADS components then combined them together

with some extra styling. When it comes to the application of

tokens we only need to concern ourselves with the ones we

have not yet made. This component in particular is using

many previously established components. For instance the

primary and secondary buttons should have already been

themed. The system message simply uses them again so

there is no need to create new component tokens for them as

they already have component tokens. The only tokens the

component will need are for styles that are not given to it from

another component. Styles like the background, stroke,

padding, and border radius of the container. However you

could create component tokens for something like the button

if, in this very specific instance, you wanted to have a button

style that does not match any of the existing button styling options. The flexibility of component

tokens lets you perform this fine tuning since we are not beholden to any alias grouping

standards we have created.

The creation of solely Product Kit

components is for situations that

the Agnostic Design System does

not cover. They are coded by the

Product Kit team for the Product Kit. This starts to touch on some

governance processes around a UDS that define when products

should deviate from what is available in the agnostic system. The

purpose of the ADS is to have a foundation of common

components so the case may arise when it doesn’t have

something a product needs. The team that owns the ADS could

add it to the foundation but that is only recommended if there is a

need by other Product Kits. Otherwise it poses a threat to the

timeline of the ADS and could set work back if they are trying to

accommodate everyone's one off components. Since the ADS

40



and PK’s do not rely on each other, teams are given the option to work at their own pace,

preventing this collision of priorities. In our header example here the Product Kit team and ADS

team may determine that headers are a component that shouldn’t get included in the agnostic

system. The responsibility is now on the PK team to create and implement this component in

their space only and we can see this reality reflected in the components construction. Nowhere

in the layers are references to ADS components. The only items in there that could become

ADS components in the future are the slot locations. These are intended to be replaced with

various components depending on the circumstances. Some product features might need

buttons on the right or a dropdown arrow on the left. These slots allow for that customization to

be in place and are seen across component types.

Product Documentation

Product Kit documentation differs from the Agnostic Design System documentation in some

major ways. Where the purpose of ADS documentation is to provide accurate explanations of

how one would go about using its components and behaviors, the PK documentation serves to

showcase the interaction model of components and experiences in the product. PK

documentation is made up of repeatable experience flows that allow designers and product

focused individuals to keep the product experience consistent. It offers answers to questions

like, “When do we use a primary button over a secondary one?”, “What is the user experience

for editing list items?”, and “How do errors work in forms?”.

The goal is to provide all three stakeholders, designers, developers and product with the means

to properly identify all the details they need to know about the available components and

experiences in the product. Where developers' needs may end at token availability and the

product needs end at what components are available for use, designers need direction on how

to construct feature experiences.

Since the needs of Product Kit documentation range so much and the capabilities of most

documentation services are not all encompassing, we will likely have two places where the

information is housed.

41



Our design application will store the visual design source of truth for things like component

construction and token adherence. This is the place where designers are creating their user

interface compositions and the library of usable components is defined and held. As we

discussed before this is the same location where we apply our tokens to our components,

allowing developers to properly transfer them to code. We can see in this example a few key

pieces of information that have been included in both the Agnostic Design System and Product

Kit design library. First there is a badge at the top of the documentation card that shows the

status of that component. This is a quick way for stakeholders to tell whether a component is a

work in progress, being coded, or is ready for use. Next we have links to various documentation

sources. These are shortcuts that help connect all the documentation locations to one another.

In the ADS you may only need links to the code since the ADS is not supposed to have any

user experience usage documentation. Where the Product Kit has a link for those docs and the

code for its specific implementation. There is also a short description of the component, what it

is, and any specific prescriptions around its usage to give a high level overview. Finally we have

the component that the designers end up using in their designs and developers reference when

developing the application.

42



The second set of documentation can be put in a location like Confluence, Zeroheight, or

Notion. This documentation is only needed for the Product Kit side of things as the Agnostic

Design System has no user experience guidelines to document, those are defined by the

product implementing it. When searching for a documentation site consider looking for features

that let you include code previews or design application embeds. Being able to connect your

documentation to other sources of truth allow for teams to spend less time on maintenance

since the documentation will update to match the content you have embedded. This

documentation set should include three primary groups of information.

The first group revolves around components. Document all the available components along with

their usage, interaction, and accessibility details. What variants are available? What does the

component do? Are there things that should be avoided with the component? If your

43



documentation site supports the inclusion of design files or code then add those so viewers are

able to see the documentation in context and get a better feel for how things work.

Patterns and standards make up the next group. This group consists of all the product

experiences we want to make uniform and repeatable. Ensuring your application is predictable

is important to reducing friction. If users are following 5 different processes to find a page or

delete an item they will never be able to feel comfortable in the application. This unification

starts and ends with the designers crafting the experiences so we want to make sure they are

all following the same standards. Here we document experience flows like what errors to show

when, how menus work, or which type of button to use when. In the case of the above example

we are surfacing the details around how user deletion of information from the application works.

Each severity level and action type is neatly defined so each stakeholder can fully understand

each scenario and apply it to their situation accordingly.

44



The last set of documentation revolves around processes and procedures. The purpose of this

is to inform individuals who are new to a system or contributing to it. It acts as an introduction to

the Product Kit and outlines its purpose and whether or not it utilizes other systems like an ADS.

Processes that could be included are how designers get new components into the system, how

to add new icons or assets, or what to do when there are missing styles. Consider the questions

you often get around the design system as a good place for sourcing what sort of process

documentation should be included here.

Documentation serves the important purpose of connecting all of the stakeholders together with

unified language and goals. While each stakeholder may have their own internal documentation,

the way designers have their design application for the minutiae of component construction,

these also serve to inform the set of collaborative documentation that keeps everyone on the

same page. As each group has questions they will be able to go to the documentation to find

the answers. Instead of playing telephone with individuals trying to find the answer to your

question, this standard set of documentation will have everything you need.

45



Chapter 6: UDS Benefits
We’ve covered each of the major pieces of a Universal Design System. Let’s bring them all

together and discuss the short and long term benefits of this system methodology.

46



As discussed, the Universal Design System seeks to solve one of the most complicated

problems in product development, information management. With developers, designers, and

product individuals all having a hand in the creation of digital experiences keeping each of them

on the same page is paramount to smooth and efficient operation. We introduce an Agnostic

Design System to handle the rapid changes in the digital world and reduce the overhead

required when recreating the same component for multiple products. The Product Kits sit on top

of the agnostic system and utilize these benefits to operate at the speed of their own timelines

and under one unified design language. While the documentation for each brings everything

together for all to collaborate and contribute to the system as a whole. All throughout we have

embedded flexibility so we are prepared for whatever the future has in store. Along with these

there are other benefits that come from each part of the UDS on their own as well as together.

Product Decoupling

When we have multiple products, or digital applications, being worked on we encounter issues

around priority collisions. One product needs a dashboard component by next month, another

needs a header in a week, and the other needs a new button. In a normal system each request

would be considered based on a set of criteria to determine who got their work done first. In the

end one or more groups is losing out as timelines are often hard to adjust. The UDS decouples

the products from their code in order to allow each to work at pace with their own timelines. If

the component exists in the ADS then that product can go ahead, theme it, then use it in their

app. If the ADS does not have the component then the products don’t need to wait for the ADS

to catch up. They are given the autonomy to generate their own components with or without the

ADS components. Since the Agnostic Design System contains many low level atom

components like buttons, inputs, and controls, products are able to utilize those to stay

connected with the agnostic foundation but produce their own product specific solution. Once

the ADS has free time those product specific components can be considered for incorporation

into the ADS for use by other products in the future. As well, the Agnostic Design System is

based on universal development standards which allows for any development framework to be

used. Removing the roadblock that comes with compatibility issues between frameworks

chosen by products. This decoupling allows everyone to work asynchronously but never lose

out on the work done by one group.

47



Communication Streamlining

The Universal Design System presents a shared language based on foundational product

development concepts. As the ADS is not subjected to a specific framework but rather

fundamental web standards, the ability for others to understand the underlying parts is greatly

improved. Stakeholders don’t need to understand how React works versus how Vue works. The

most anyone needs to know is that the ADS offers a set of components that have the ability to

look however you want. The purpose and architecture of the Agnostic Design System is so

simple that it becomes much easier for each stakeholder to fully understand its purpose. What

you see is what you get. Where the complexity starts to come in is with the Product Kits and

their set of documentation and product specific assets. Although complex, the organization of

product documentation should be thoughtful and intentionally executed. As we’ve discussed

there are group based information sources that serve to provide fine-grain detail for each

stakeholder. But there is also the shared documentation source that brings all of this disparate

information together for all to benefit from. The UDS distills documentation down to prevent over

definition, loose ends, and information entropy. The more you interconnect documentation

through the use of embedded design and code files the more accurate the system becomes.

Each stakeholder is able to glean the same information in order to make informed decisions.

Overhead Reduction

The ADS has the responsibility of doing a lot of the leg work up front and free from distraction.

With core components pre-defined the effort required is greatly reduced as products now have a

Lego kit of sorts to work from instead of spending all that time re-developing the same button

over and over again. The agnostic system takes the work that would be multiplied per product

and does it once. This has the added benefit of opening the door for technologies to be

incorporated universally rather than per product. As new business requirements come out that

all products have to subscribe to going forward, the ADS can implement it within the foundation

of all the products. Doing the work once instead of multiple times. Where products would usually

be left to their own devices to do the bulk of the implementation, the ADS’s sharing capabilities

reduces this overhead.

Accessibility From The Start

A good example of overhead reduction can also be found in the inclusion of accessibility within

products. Good practice when creating digital experience is to always include accessibility

48



features from the get go. But unfortunately this is not always the case. Whether it be timeline

restrictions or a “lack of need” many products ignore these requirements. Since accessibility

features can be supplied at the foundation of every product via the ADS, the excuses for its lack

of inclusion start to wane. The need for every single product team to understand it is cut down

as well since the ADS is essentially a templated system, meaning everything in it is provided to

everyone using it. It doesn't provide full coverage for standards like WCAG, as there are

contextual requirements around accessibility, but it massively reduces the friction to becoming

accessible.

Rapid Iteration

With a foundational framework like the ADS, you are now afforded the ability to venture into new

territories previously deemed too costly. Having all this overhead pre-done the cost to spin up

new product ideas is vastly reduced. New and experimental apps can be spun up to test out

ideas in a more tangible format instead of solely relying on design prototyping. This also

extends into the creation of tooling specific to the productivity of the business. Applications can

be created for all parts of the business instead of needing to invest in costly one-off solutions or

third-party integrations that lock you into their roadmap and technologies. The Agnostic Design

System serves as a powerful prototyping tool and cost analysis driver as you can more easily

determine the work required by actually testing out its implementation. Allowing for easier

determination of viability and solution sources.

No matter the direction you take your design system, consider including the aforementioned

concepts in your solution. Each is important to a cohesive and flexible design system that will

stand the test of time. They allow for priorities and concerns to be properly assessed and acted

upon in a structured way.

49



Chapter 7: Conclusion
The design systems of today have served their purpose, but as products increase in scope and

complexity it is clear the way forward is found with the Universal Design System.

50



We rely on universally understood standardization in our everyday lives to maintain a

sense of consistency and predictability in our experiences and decisions. When we are hit with

variability our senses are heightened and a sense of uncomfortability sets in as we use previous

knowledge to try and ascertain what the outcome will be. While we can’t control everything, like

in the case of intersections where the movement of every car is the choice of the driver, we can

set standards that every driver can understand and use to infer these outcomes with greater

precision. Just like the Department of Transportation’s standardization and implementation of

traffic control infrastructure. Drivers are afforded with the confidence that stop signage, like stop

signs or traffic lights, will appear the same and have the same meaning everywhere they go.

This requirement for user confidence extends to your product in order to maintain a smooth and

enjoyable experience. Products without predictability instill distrust in its users, ultimately

leading to user dissatisfaction. In order to achieve this predictability we have to be able to corral

all the parts of the product in order to standardize it and keep it standardized.

The Universal Design System steps up as the solution to this problem. We cover all the primary

points of a standardized system by utilizing a foundational layer of components and functionality

known as the Agnostic Design System, and the application specific implementation through the

use of Product Kits. The principles of each are useful with or without one or the other. But

combined they form an impenetrable system capable of handling any situation thrown at it. The

UDS takes the common concepts of today's systems and sets them up to work with one

another, playing off of one another's strengths.

As we’ve discussed much of this system at a higher level, my hope is that you will be able to

take these concepts and implement them into your own system. Whether that be individual

application of concepts or a full rewrite of your existing system, the benefits of a UDS cannot be

understated. For a deeper dive into the implementation of these concepts consider checking out

my other books. There I cover topics like design token structures, theming, design library

component construction, designer experience patterns, and more.

51



Terminology

Design Systems

An amalgamation of design, development,

and business requirements that come

together to form a repeatable set of assets

to build digital and physical products. The

most well known parts of a design system

are the use of standardized colors,

typography, spacing, and components.

Agnostic System

Many systems out there stick themselves to

a particular framework. Whether it be React,

Vue, Angular, or one of the many other

options. A system that is agnostic means

that it does not need to adhere to any one

framework. It is set up in such a way that its

core is not reliant on a framework and can

be morphed to fit whatever framework is

desired, if any are.

Patterns

A type of documentation that outlines the

preferred usage of a component or

operation of a feature experience in a

specific product. These help keep all similar

scenarios in a product operating in a

predictable manner. Making designing

easier and the UX of a product more

consistent.

Accessibility

This is the practice of making your product

usable for individuals with disabilities

ranging from mental to physical.

Components

These live in both the design and the

development realm but should be

congruent. They are your buttons,

checkboxes, cards, etc. These arise from

the combination of your foundational design

system principles of color, spacing, and type

and the functionality provided through code.

Tokens

Often referred to as “design tokens”, these

are variables that are set to various styles in

the system. You can introduce logic and

various parent/child relationships to enable

theming and other advanced styling

abilities.

Master Component

These are the UI components that act as

templates and dictate how any component

variant using it looks.

52



Component Variant

This means two things. First, the master

component does not have to be just one

component nor should it be. Many

components require states such as hover

and disabled to be defined visually. The

variants allow you to do so by assigning

states to different types of the same master

component. The other purpose of a variant

is to allow designers to use the component

in their designs but remain connected to the

source of truth and get any updates that the

master component gets from its

maintainers.

Component Parts

Parts are often not used by development or

the end designers but serve as construction

helpers when putting together components

in the design software. These are pieces

that make up the master or variant

components but are not usually intended as

a usable component alone.

Blueprints

Variations on core components to produce

solutions for specific use cases. For

example you might have a menu

component but want specific menu setups

to be available to developers and designers.

Everyone that is going to be using a settings

menu you might want them all pulling in the

same exact menu. Blueprints plainly lay out

how this should look so both groups are not

starting from scratch. Much of this is

determined by product patterns.

“Replace Me”

A construction helper, similar to slots and

are primarily for designers. These are used

in places like cards, tiles, or messages.

Places where a large area of blank space

exists where any number of compositions

can be placed within. They also serve to

enhance the design experience and allow

for more accurate and realistic designs to

be produced.

Slots

These are predestined locations inside a

component that other assets or components

can be placed into. They allow for

customization by designers so they are able

to produce solutions specific to their

situation and act as a construction aid in the

design process.

53


